73 research outputs found

    Scatter of mass changes estimates at basin scale for Greenland and Antarctica

    Get PDF
    During the last decade, the GRACE mission has provided valuable data for determining the mass changes of the Greenland and Antarctic ice sheets. Yet, discrepancies still exist in the published mass balance results, and comprehensive analyses on the sources of errors and discrepancies are lacking. Here, we present monthly mass changes together with trends derived from GRACE data at basin scale for both the Greenland and Antarctic ice sheets, and we assess the variability and errors for each of the possible sources of discrepancies, and we do this in an unprecedented systematic way, taking into account mass inference methods, data sets and background models. We find a very good agreement between the monthly mass change results derived from two independent methods, which represents a cross validation. For the monthly solutions, we find that most of the scatter is caused by the use of the two different data sets rather than the two different methods applied. Besides the well-known GIA trend uncertainty, we find that the geocenter motion and the recent de-aliasing corrections significantly impact the trends, with contributions of &plus;13.2 Gt yr<sup>−1</sup> and −20 Gt yr<sup>−1</sup>, respectively, for Antarctica, which is more affected by these than Greenland. We show differences between the use of release RL04 and the new RL05 and confirm a lower noise content in the new release. The overall scatter of the solutions well exceeds the uncertainties propagated from the data errors and the leakage (as done in the past); hence we calculate new sound total errors for the monthly solutions and the trends. We find that the scatter in the monthly solutions caused by applying different estimates of geocenter motion time series (degree-1 corrections) is significant – contributing with up to 40% of the total error. For the whole GRACE period (2003–2011) our trend estimate for Greenland is −234 ± 20 Gt yr<sup>−1</sup> and −83 ± 36 Gt yr<sup>−1</sup> for Antarctica (−111 ± 15 Gt yr<sup>−1</sup> in the western part). We also find a clear (with respect to our errors) increase of mass loss in the last four years

    Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet

    Get PDF
    A new methodology for retrieval of glacier and ice sheet elevations and elevation changes from CryoSat-2 data is presented. Surface elevations and elevation changes determined using this approach show significant improvements over ESA's publicly available CryoSat-2 elevation product (L2 Baseline-B). The results are compared to near-coincident airborne laser altimetry from NASA's Operation IceBridge and seasonal height amplitudes from the Ice, Cloud, and Elevation Satellite (ICESat). Applying this methodology to CryoSat-2 data collected in interferometric synthetic aperture mode (SIN) over the high-relief regions of the Greenland Ice Sheet we find an improvement in the root-mean-square error (RMSE) of 27 and 40 % compared to ESA's L2 product in the derived elevation and elevation changes, respectively. In the interior part of the ice sheet, where CryoSat-2 operates in low-resolution mode (LRM), we find an improvement in the RMSE of 68 and 55 % in the derived elevation and elevation changes, respectively. There is also an 86 % improvement in the magnitude of the seasonal amplitudes when compared to amplitudes derived from ICESat data. These results indicate that the new methodology provides improved tracking of the snow/ice surface with lower sensitivity to changes in near-surface dielectric properties. To demonstrate the utility of the new processing methodology we produce elevations, elevation changes, and total volume changes from CryoSat-2 data for the Greenland Ice Sheet during the period January 2011 to January 2015. We find that the Greenland Ice Sheet decreased in volume at a rate of 289 ± 20 km3a−1, with high interannual variability and spatial heterogeneity in rates of loss. This rate is 65 km3a−1 more negative than rates determined from ESA's L2 product, highlighting the importance of CryoSat-2 processing methodologies.</p

    Mass changes in Arctic ice caps and glaciers: implications of regionalizing elevation changes

    Get PDF
    The mass balance of glaciers and ice caps is sensitive to changing climate conditions. The mass changes derived in this study are determined from elevation changes derived measured by the Ice, Cloud, and land Elevation Satellite (ICESat) for the time period 2003–2009. Four methods, based on interpolation and extrapolation, are used to regionalize these elevation changes to areas without satellite coverage. A constant density assumption is then applied to estimate the mass change by integrating over the entire glaciated region. <br><br> The main purpose of this study is to investigate the sensitivity of the regional mass balance of Arctic ice caps and glaciers to different regionalization schemes. The sensitivity analysis is based on studying the spread of mass changes and their associated errors, and the suitability of the different regionalization techniques is assessed through cross-validation. <br><br> The cross-validation results shows comparable accuracies for all regionalization methods, but the inferred mass change in individual regions, such as Svalbard and Iceland, can vary up to 4 Gt a<sup>−1</sup>, which exceeds the estimated errors by roughly 50% for these regions. This study further finds that this spread in mass balance is connected to the magnitude of the elevation change variability. This indicates that care should be taken when choosing a regionalization method, especially for areas which exhibit large variability in elevation change

    Circum-Greenland, ice-thickness measurements collected during PROMICE airborne surveys in 2007, 2011 and 2015

    Get PDF
    The Greenland ice sheet has experienced an average mass loss of 142 ± 49 Gt/yr from 1992 to 2011 (Shepherd et al. 2012), making it a significant contributor to sea-level rise. Part of the ice- sheet mass loss is the result of increased dynamic response of outlet glaciers (Rignot et al. 2011). The ice discharge from outlet glaciers can be quantified by coincident measurements of ice velocity and ice thickness (Thomas et al. 2000; van den Broeke et al. 2016). As part of the Programme for monitoring of the Greenland Ice Sheet (PROMICE; Ahlstrøm et al. 2008), three airborne surveys were carried out in 2007, 2011 and 2015, with the aim of measuring the changes in Greenland ice-sheet thicknesses. The purpose of the airborne surveys was to collect data to assess the dynamic mass loss of the Greenland ice sheet (Andersen et al. 2015). Here, we present these datasets of observations from ice-penetrating radar and airborne laser scanning, which, in combination, make us able to determine the ice thickness precisely. Surface-elevation changes between surveys are also presented, although we do not provide an in-depth scientific interpretation of these
    • …
    corecore